Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shan Gao,* Ji-Wei Liu, Li-Hua Huo and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,
People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.115$
Data-to-parameter ratio $=17.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(N -Hydroxy- N -phenylbenzamidato- $\mathrm{\kappa}^{2} \mathrm{O}, \mathrm{O}^{\prime}$)-[3-methoxysalicylaldehyde (2,4-dichlorophenoxyacetyl) hydrazonato- $\left.\kappa^{3} \mathrm{O}, \mathrm{N}, \mathrm{O}^{\prime}\right]$ oxovanadium(V)

The V^{V} atom in the title complex, $\left[\mathrm{V}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{C}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right.$ $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \mathrm{O}$], is coordinated by two O atoms and one N atom of the tridentate hydrazone ligand, and by two O atoms of the bidentate hydroxamate co-ligand, thus defining a distorted octahedral $\mathrm{VO}(\mathrm{ONO})(\mathrm{ON})$ geometry.

Comment

The presence of oxovanadium (V) at the active sites of some biological enzymes, and the discovery of the biological relevance of hydrazone-vanadium complexes, has resulted in increased interest in the study of their structural properties (Sangeetha \& Pal, 2000; Kurzak et al., 1992). In previous work, we have reported the structures of some vanadium(V) complexes containing tridentate hydrazone ligands, in which the hydrazone ligands are formed by condensing benzoylhydrazine or its derivatives with acetylacetone, salicylaldehyde or 3-methoxysalicylaldehyde (Huo, Gao, Liu, Li \& Ng, 2004; Huo, Gao, Liu, Zhao \& Ng, 2004; Chen et al., 1999; Gao et al., 1998; Liu \& Gao, 1998). Here, we present a new oxovanadium(V) complex, (I), $\operatorname{VO} L\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right)$ [$\mathrm{H}_{2} L=$ 3-methoxysalicylaldehyde (1,4-dichlorophenoxyacetyl)hydrazone], obtained from the reaction of N-(3-methoxy salicylaldehyde)- N^{\prime}-(1,4-dichlorophenoxyacetyl)hydrazone, N-hydroxy- N-phenylbenzamide and VO (acetylacetonate) $)_{2}$ in ethanol solution.

(I)

As shown in Fig. 1, the vanadium(V) atom in (I) is coordinated by two O atoms and one N atom of the tridentate hydrazone ligand, and two O atoms of the bidentate hydroxamate co-ligand, to form a distorted octahedral $\mathrm{VO}(\mathrm{ONO})(\mathrm{ON})$ configuration. The equatorial plane is defined by atoms O2, O3 and N1 of the fully deprotonated tridentate hydrazone ligand and the oxime atom O6 of the hydroxamate co-ligand. The axial oxo atom O 1 is in a trans position relative to the carbonyl atom O 7 of the hydroxamate co-ligand, with an $\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 7$ angle of $171.34(7)^{\circ}$. The V atom deviates by 0.27 (2) \AA from the equatorial plane towards

Received 18 October 2004 Accepted 21 October 2004 Online 30 October 2004

Figure 1
A view of the structure of (I), with 30% probability displacement ellipsoids.
atom O1. The $\mathrm{V} 1-\mathrm{O} 1$ bond distance of 1.5810 (16) \AA is within the normal range of values observed in the structures of VO^{3+} complexes (Chen et al., 1999). The bond distances to atom V 1 in the equatorial plane follow the order phenoxide O < oxime O < enolic O < imine N . The axial $\mathrm{V} 1-\mathrm{O} 7$ distance of $2.1816(15) \AA$ is longer than the equatorial $\mathrm{V}-\mathrm{O}$ bond lengths, due to the strong trans influence of the oxo group. The bond lengths (Table 1) indicate some degree of electron delocalization of the hydrazone ligand. The $\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 10-$ O5 torsion angle is $58.1(3)^{\circ}$, suggesting that the phenoxyacetate group has some conformational flexibility.
The hydrazone ligand and the hydroxamate co-ligand combine with the V^{v} atom to give one six-membered and two five-membered chelate rings. The two five-membered chelate rings, involving atoms $\mathrm{O} 3 / \mathrm{C} 9 / \mathrm{N} 2 / \mathrm{N} 1 / \mathrm{V} 1$ and $\mathrm{O} 6 / \mathrm{N} 3 / \mathrm{C} 23 / \mathrm{O} 7 /$ V1, are basically planar, with mean deviations of 0.04 (2) and 0.07 (2) \AA, respectively, whereas the six-membered chelate ring, involving atoms $\mathrm{O} 2 / \mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{V} 1$, is non-planar, with an r.m.s. deviation of 0.18 (2) \AA. The dihedral angle between the two five-membered chelate rings is $71.7(7)^{\circ}$. The dihedral angles between the benzene rings $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16, \mathrm{C} 11-$ C 16 and $\mathrm{C} 17-\mathrm{C} 22, \mathrm{C} 17-\mathrm{C} 22$ and $\mathrm{C} 24-\mathrm{C} 29$, and $\mathrm{C} 1-\mathrm{C} 6$ and C24-C29 are 71.3 (6), 69.8 (6), 66.0 (6) and 52.5 (6) $)^{\circ}$, respectively.

Experimental

The $\mathrm{VO}(\mathrm{acac})_{2}$ starting material ($\mathrm{acac}^{-}=$acetylacetonate) was synthesized according to the method of Rowe \& Jones (1957). The ligand $\left(\mathrm{H}_{2} L\right)$, 3-methoxysalicylaldehyde (1,4-dichlorophenoxyacetyl)hydrazone, was synthesized by condensing 3-methoxysalicylaldehyde with an equimolar quantity of (1,4-dichlorophenoxyacetyl)hydrazine in ethanol. An ethanol solution (15 ml) of $\mathrm{VO}(\mathrm{acac})_{2}(2 \mathrm{mmol})$ was added dropwise to an ethanol solution (15 ml) containing N-(3-methoxysalicylaldehyde)- N^{\prime}-(1,4-dichlorophenoxyacetyl)hydrazone (2 mmol) and the mixture was refluxed with stirring for 1 h . An ethanol solution containing N-hydroxy- N phenylbenzamide (2 mmol) was added slowly to the above solution with stirring for 25 min and then filtered. The resulting dark-red solid was dissolved in dichloromethane and filtered. Dark-red crystals of (I) were obtained by slow diffusion of hexane into the filtrate over
several days. CHN analysis, calculated for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{C}_{12} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~V}$: C 53.89, H 3.43, N 6.50\%; found: C 53.97, H 3.48, N 6.45%.

Crystal data

$\left[\mathrm{V}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}\right) \mathrm{O}\right]$	$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=646.34$	Mo $K \alpha$ radiation
Monoclinic, C2/c	Cell parameters from 22925
$a=26.290$ (2) \AA	reflections
$b=14.445$ (2) \AA	$\theta=3.4-27.5^{\circ}$
$c=15.568$ (2) \AA	$\mu=0.59 \mathrm{~mm}^{-1}$
$\beta=107.30$ (3) ${ }^{\circ}$	$T=293$ (2) K
$V=5644.6$ (15) \AA^{3}	Prism, red
$Z=8$	$0.39 \times 0.27 \times 0.20 \mathrm{~mm}$
Data collection	
Rigaku R-AXIS RAPID areadetector diffractometer	6460 independent reflections 5251 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.026$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h=-34 \rightarrow 34$
$T_{\text {min }}=0.802, T_{\text {max }}=0.891$	$k=-18 \rightarrow 18$
23639 measured reflections	$l=-20 \rightarrow 18$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0608 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$	+5.141P]
$w R\left(F^{2}\right)=0.115$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.02$	$(\Delta / \sigma)_{\text {max }}=0.001$
6460 reflections	$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{\AA^{-3}}$
380 parameters	$\Delta \rho_{\text {min }}=-0.33 \mathrm{e} \AA^{-3}$
H -atom parameters constrained	

$D_{x}=1.521 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 22925 reflections
$\theta=3.4-27.5^{\circ}$
$\mu=0.59 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, red
$0.39 \times 0.27 \times 0.20 \mathrm{~mm}$

6460 independent reflections
5251 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-34 \rightarrow 34$
$k=-18 \rightarrow 18$
$l=-20 \rightarrow 18$

$$
\begin{aligned}
& w=1 /[{\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0608 P)^{2}\right.} \\
&+5.141 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.48 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

V1-N1	$2.0672(17)$	$\mathrm{V} 1-\mathrm{O} 7$	$2.1816(15)$
$\mathrm{V} 1-\mathrm{O} 1$	$1.5810(16)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.397(2)$
$\mathrm{V} 1-\mathrm{O} 2$	$1.8452(14)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.285(3)$
$\mathrm{V} 1-\mathrm{O} 3$	$1.9737(14)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.291(3)$
$\mathrm{V} 1-\mathrm{O} 6$	$1.8541(14)$	$\mathrm{O} 3-\mathrm{C} 9$	$1.291(2)$
$\mathrm{N} 1-\mathrm{V} 1-\mathrm{O} 7$	$88.04(6)$	$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 6$	$107.17(6)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{N} 1$	$99.88(8)$	$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 7$	$85.58(6)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 2$	$98.71(7)$	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{N} 1$	$74.41(6)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 3$	$99.46(7)$	$\mathrm{O} 3-\mathrm{V} 1-\mathrm{O} 7$	$79.21(6)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 6$	$96.27(8)$	$\mathrm{O} 6-\mathrm{V} 1-\mathrm{N} 1$	$159.14(7)$
$\mathrm{O} 1-\mathrm{V} 1-\mathrm{O} 7$	$171.34(7)$	$\mathrm{O} 6-\mathrm{V} 1-\mathrm{O} 3$	$90.02(6)$
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{N} 1$	$83.41(6)$	$\mathrm{O} 6-\mathrm{V} 1-\mathrm{O} 7$	$75.23(6)$
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 3$	$153.37(7)$		

All H atoms were placed in calculated positions and were allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}$ for aromatic H atoms, and with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ for methyl H atoms.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B007), the Educational

metal-organic papers

Committee Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.

References

Chen, W., Gao, S. \& Liu, S.-X. (1999). Acta Cryst. C55, 531-533.
Gao, S., Weng, Z.-Q. \& Liu, S.-X. (1998). Polyhedron, 17, 3595-3606.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Huo, L. H., Gao, S., Liu, J. W., Li, J. \& Ng, S. W. (2004). Acta Cryst. E60, m758m760.
Huo, L. H., Gao, S., Liu, J. W., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m606-m608.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Kurzak, B., Kozlowski, H. \& Farkas, E. (1992). Coord. Chem. Rev. 114, 169200.

Liu, S.-X. \& Gao, S. (1998). Polyhedron, 17, 81-84.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Rowe, R. \& Jones, M. M. (1957). Inorg. Synth. 5, 113-115.
Sangeetha, N. R. \& Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357-363.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

